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Definitions

Periodicity of 24 hours:

Activity:

Diurnal Nocturnal

Diel or Diurnal Cycles



Outline

 What is Diel Cycling?

 Diel Cycling Mechanisms

 Examples of Diel Cycles

 Field parameters

 Other common cycles

 Nutrients

 Metals

 Implications for Monitoring Water Quality

 Examples (How you can get into trouble!)

 Monitoring guidelines (How to stay out of trouble!)

 Instrumentation

Madison River, Montana



The Rest of Our Research Team

Chris Gammons Steve Parker

Montana Tech, Butte, Montana



 Changing conditions (weather, seasonal, annual)

 Episodic events (rainfall runoff, spills)

 Anthropogenic activity (WWTP effluent, reservoir 

release for power generation, irrigation withdrawal)

 Diel biogeochemical cycling

“Intensity of monitoring 

likely controls your 

perception of 

variability”

Portneuf R. at T-12 - Dissolved Oxygen
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Variability in Water Quality
Temperature in Moose Creek
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“Water quality is more 

variable than we know, 

and the more we look, 

the more we find.”

(Don Essig, Idaho DEQ)



Diel Biogeochemical Cycling

pH ↑

Twater↑
DO, Eh↑
streamflow↓ or ↑

NH4
+ →NO3

-

Fe2+ →FeOx

Mn2+ →MnOx

MnOx → Mn2+

FeOx → Fe2+

O2CO2CO2
O2

Zn2+
Zn2+

H2AsO4
-

H2AsO4
-

Fe3+→ Fe2+

DOC→ DIC

NO3
- → N2biofilm

hv ↑↑
Tair ↑
ET ↑ 

hv ↓↓
Tair ↓
ET ↓

pH ↓ 
Twater ↓

DO, Eh ↓
streamflow↓ or ↑

P > R R > P

(Nimick et al., 2011)



Diel Cycles: Mechanisms

Physical Processes

 Water temperature

 Streamflow

 Particle settling

 Nocturnal aquatic 

activity

Biogeochemical Processes

 Photosynthesis/respiration

 Photochemical reactions

 Reductive dissolution

 Adsorption/desorption

 Mineral and gas solubility

 Biological assimilation

White = primary process

driven directly by sunlight

Pink = secondary process

reacting to a primary process



Causes

 Solar heating

 Radiative cooling

 Groundwater inflow

Importance

 Ecological stress

 Influences kinetics and 

equilibrium of aqueous 

reactions

 Microbial reactions

 Mineral and gas solubility

 Adsorption

 Water viscosity

 Streambed hydraulic 

conductivity

 Particle settling
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(Gammons et al., 2005a)

downstream

Diel Temperature Cycles

Downstream change in diel temperatures



Importance of Temperature

Silver Bow Creek, Montana

(USGS long-term monitoring data for 2002-2011)

24-hr sampling

T

Zn

0

10

20

30

40

50

60

70

80

90

2

20

200

2,000

2001 2003 2005 2007 2009 2012 T
E

M
P

E
R

A
T

U
R

E
 (

o
C

)

F
IL

T
E

R
E

D
 Z

IN
C

 (
u

g
/L

)

R² = 0.67

2

20

200

2,000

0 5 10 15 20 25

F
IL

T
E

R
E

D
 Z

IN
C

 (
u

g
/L

)

TEMPERATURE (oC) 

24-hr sampling



Diel pH Cycles
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 Diel pH changes are 

greatest for 

high-productivity, 

neutral-to-alkaline 

streams

 Diel pH changes in 

acidic streams are 

usually small

(Nimick et al., 2011)



 Causes

 Photosynthesis/respiration

 Changes in temperature

 Changes in ground-
water inflow

 Fe chemistry

CO2 + H2O CH2O + O2

Day

Night

 Importance

 Many reactions are 

pH-dependent:

 Mineral solubility

 Gas solubility

 Adsorption
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Seasonal 

Changes 

in Diel  

Cycles
7.2
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p
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Nov '00 Feb '01 May '01 Aug '01

 As long as the sun 

shines and the water 

is open, there are 

diel cycles!  

Big Hole River in winter

Day 1 Day 2 Day 3 Day 4

(Chris Gammons, Montana Tech)



Diel Cycles in Dissolved Oxygen

 DO changes are largest in slow-moving, high-productivity streams

 DO usually peaks at noon (sun is directly overhead)

Big Hole River, MT
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Diel Cycling in Biofilms vs. Bulk Water

 Changes in pH, 

DO, and redox 

are magnified in 

biofilms relative 

to the bulk water!

Mn2+, Zn2+

HMO HFO

HFO

HMO HFO

Mn2+, Zn2+

HFO

O2

O2

O2

O2

reductive 

dissolution

oxidative 

precipitation

Fe2+

biofilm

biofilm

A.  Day

B.  Night

hyporheic

zone

hyporheic

zone

water  column

water  column

DO, pH

DO, pH

(Parker et al., 2007)Biofilm



Diel Cycles in Hardness

 Hardness is proportional 

to Ca & Mg concentration

 Diel hardness cycles

caused by diel changes in

 Streamflow 

 Calcite (CaCO3) precipitation

and dissolution

 Importance: Aquatic life 

standards for many toxic 

metals are hardness-

dependent
Mill-Willow Bypass, Montana, August 2005 

(Gammons et al., 2007)



Diel Cycles in Suspended Solids

Clark Fork River, Montana

(Parker et al., 2007)
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 Particulate concentrations increase at night:
 Foraging of benthic macroinvertebrates

 Oxides form as Fe is released by reductive dissolution in biofilms

 Particle settling rate decreases as temperature decreases

Clark Fork River, Montana 

(Brick and Moore, 1996)
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Diel Streamflow Cycles

 Freeze/thaw 

 Ice formation

 Snow melt 

 Evapotranspiration

 Temperature-dependent 

streamflow loss

 Anthropogenic

 Wastewater or 

reservoir discharge

 Irrigation withdrawals

 Macrophyte dams

Big Hole River, Montana



 Diel streamflow cycles affect:

 Solute concentration (dilution)

 Solute load (load = concentration x flow)

Evapotranspiration (ET) typically changes flow by <20%

high flow, high stagehigh flow, high stage

groundwater enters river

Diel Streamflow Cycles

ETET ETET ETET ETET ETET

low flow, low stage

river loses water to groundwater



Diel Cycling of Nutrients

 Nitrate (NO3
-)

 Nitrite (NO2
-)

 Nitrous oxide (N2O)

 Nitrogen (N2)

 Ammonia (NH4
+)

 Organic-N

 Suspended solids

 Orthophosphate (HPO4
-2) 

 Organic-P

 Suspended solids

NITROGEN PHOSPHORUS

Big Hole River, Montana  



 Diel redox cycles 

 Nitrification (ammonia + O2 → nitrate)

 Denitrification (nitrate + organic C → N2)

 Anammox (ammonia + nitrate → N2)

 Diel changes in rate of uptake 

by biota

 Diel changes in delivery rate 

from hyporheic or benthic zones

 Sorption/desorption of P

Silver Bow Creek, Montana  

Diel Cycling of Nutrients



Clark Fork River, Montana (Brick and Moore, 1996)

Diel Cycling of Nitrate

Sleepers River, Vermont (Pellerin et al., 2012)
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Diel Trace-Element Cycles in 

Neutral and Alkaline Streams

Arsenic
22-33 g/L

50%

Cadmium
1.4-3.0 g/L

110%

Manganese
35-142 g/L

306%

Zinc
214-634 g/L

196%



Diel Trace-Element Cycles

Diel sampling sites – 1990-2011



Dissolved As,Cd,Cu,Mn,Zn diel data

(Nimick et al., 2003)

80 ft3/s

0.6 ft3/s 13 ft3/s

1 ft3/s



Magnitude of Diel Cycles for 

Dissolved Trace Elements

Trace Element1 Maximum Daily 

Increase (%) 2

Number of Diel 

Samplings2

Zn 990 >35

Rare earth elements 830 2

Cd 330 12

Mn 306 20

Ni 167 1

U 125 2

Methyl Hg 93 2

As 54 >25

Cu (pH = 6.8 – 7) 140 3

Cu (pH > 7) <10 12

Se <10 1

1. Near-neutral to alkaline streams unless otherwise noted

2. See Nimick et al. (2011) and Balistrieri et al. (2012) for references



Year-to-Year Variation



Prickly Pear Creek, Montana

Seasonal Variation

(Nimick et al., 2005)

Daily pH maximum
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Lakes versus Rivers

 Lakes and 

ponds tend to 

“even out” diel 

cycles found in 

streams

High Ore Creek, MT

(Gammons et al., 2007b)

0.7 km downstream of pond

pond inlet

pond outlet



Possible Causes – Dissolved Metal Cycles

 Diel variation in metal input

 Biological uptake 

 Precipitation-dissolution

reaction

 Sorption-desorption 

reaction

South Fork Coeur d’Alene River



Cause: Diel Source Input or 

Instream Process?

Upstream

site

Downstream

site

No lag time means cycles caused 

by instream process

4.5-hr

travel

time



Cause: Biological Uptake

 Uptake by biofilm and periphyton 

is plausible reason for Zn cycles 

but not As cycles, which have 

opposite timing 

High Ore Creek



Cause: Precipitation-Dissolution

 Daytime increases in pH and water temperature 

increase mineral saturation and precipitation

 Zn+2 + CO3
-2 = ZnCO3(s) (smithsonite)

 Ca+2 + CO3
-2 = CaCO3(s) (calcite)

 Reversible reaction

 pH changes much greater 

within biological surface 

 Does not explain arsenic

pH
7 8 9

D
e

p
th

 (
m

m
)

-6

-4

-2

0

2

4
Light

Dark

Poisoned

pH profiles in lab-cultured biofilm

(Morris, 2005)

WATER

BIOFILM



Cause: Sorption-Desorption

Biofilm

Hydrous Fe & Mn oxides

Possible inorganic 

and organic 

sorption substrates



 Cation sorption increases and anion sorption 
decreases with either:

 increased pH, or

 increased temperature

Cause: Sorption-Desorption



Not All Streams Exhibit Diel Cycling  

 Deep, turbid, shaded

 Low productivity  

 Small pH and T changes

Coeur d’Alene River,

Idaho

 Shallow, clear

 High productivity

 Large pH and T changes

Silver Bow Creek, Montana

Big cycles Small or nonexistent cycles



Diel Processes in Acidic Streams

Fisher Creek 

Montana

Rio Tinto, Spain

Rio Agrio, 

Argentina

Coal mine drainage, Montana

(Gammons et al., 2010) (Gammons et al., 2005a,b)

(Parker et al., 2008)(Gammons et al., 2008)



Fe(III) Photoreduction

Fe3+ + H2O + h  Fe2+ + H+ + OH

Rio Tinto, Spain

 Light can 

reduce Fe(III) in 

both dissolved 

and solid forms

 Less important 

at pH > 6

 (h = photons)



Fisher Creek, Montana

(Gammons et al., 2005a)

Fe Chemistry along a pH Gradient

F2: pH  5.5

F3: pH  6.8

New World

Cu-Au

Mining District
F1: pH  3.3
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F2
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time
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Conclusions – Diel Cycling

 Parameters and constituents:

Streamflow

pH

Temperature

Dissolved oxygen

Trace elements

Nutrients

Hardness and alkalinity

Suspended particles

 Diel variations must be considered 

when collecting or interpreting 

water-quality data!



Implications: Time of Sampling Important!

6:00 AM

4:30 PM

Flow

Acute aquatic-life standard for zinc

Prickly Pear Creek, Montana



Sampling time:

Afternoon

Morning

11

2

Implications: Time of Sampling Important!

1

2



Implications for Synoptic Sampling: Example 1 

High Ore Creek

Reclaimed mine site

flow
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Sampling in downstream direction

Sampling in upstream direction

Load = Concentration x Flow



Implications for Synoptic Sampling: Example 2 

Treatment Ponds

Mill-Willow Bypass

Distance downstream, km
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Work

day

Implications for Synoptic Sampling: Example 3 



Better

sampling

time

Implications for Synoptic Sampling: Example 3 
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 Chronic standards

 Sample at equal time intervals 

to obtain 4-day mean

 Acute standards

 Pick sample time to coincide 

with daily maximum 

 Temporal or spatial analysis

 Always sample at same time 

or collect 24-h samples

 Comparison of loads 

(temporally or spatially)

 Collect samples and measure 

flows over 24 hours

Sampling Strategies

Silver Bow Creek, Montana
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Continuous Collection Methods

• Electrometric & optical sensors

(pH, DO, SC, T, turbidity, NO3, 

chlorophyll, fluorescence, 

CDOM)

• In-situ analyzers that use 

bench-chemistry methods 

(NO3, SiO2, Cl, P, …)

• Lab on the streambank

(GC/MS, metals, …)

• Surrogates (e.g., measure 

turbidity to quantify bacteria)

• Automated samplers

Multi-sensor sonde

In-situ analyzer



•Criteria are set with true 

variability and toxicity in 

mind

•Criteria are set with 

monitoring practicality

in mind 

Environmental protection may be most effective when:

Water-Quality Criteria and Monitoring  

Prickly Pear Creek
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Conclusion:

Monitoring capability is out in front of criteria

Water-Quality Criteria and Monitoring:

Temperature

Criteria:

Maximum daily maximum

Maximum weekly maximum

Maximum daily average

Maximum weekly average

Monitoring:

Hobos, Tidbits, data sondes

Easy calibration, accurate, no drift



Conclusion:

Monitoring capability has caught up with criteria

Water-Quality Criteria and Monitoring:

Dissolved Oxygen

Monitoring:

Data sondes

Need periodic calibration and

maintenance to offset drift 

and fouling

Criteria:

Minimum

7-day average minimum

30-day average



Monitoring:

Site visits needed

Automatic samplers require

attention in the field but may

let you sleep

Diel variability difficult and

expensive to address

Conclusion:

Criteria are out in front of monitoring.  A more practical 

expression of criteria may be needed.

Water-Quality Criteria and Monitoring:

Metals

Criteria:

Acute standard:

1-hour average concentration

Chronic standard:

4-day average concentration 

…. not to be exceeded more

than once in three years



Questions?

pH ↑

Twater↑
DO, Eh↑
streamflow↓ or ↑

NH4
+ →NO3

-

Fe2+ →FeOx

Mn2+ →MnOx

MnOx → Mn2+

FeOx → Fe2+

O2CO2CO2
O2

Zn2+
Zn2+

H2AsO4
-

H2AsO4
-

Fe3+→ Fe2+

DOC→ DIC

NO3
- → N2biofilm

hv ↑↑
Tair ↑
ET ↑ 

hv ↓↓
Tair ↓
ET ↓

pH ↓ 
Twater ↓

DO, Eh ↓
streamflow↓ or ↑

P > R R > P
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